
Postprint, May 2020

The Information Systems Modeling Suite
Modeling the Interplay Between Information and Processes

Jan Martijn E. M. van der Werf1 and Artem Polyvyanyy2

1 Department of Information and Computing Science
Utrecht University, The Netherlands
j.m.e.m.vanderwerf@uu.nl

2 School of Computing and Information Systems
The University of Melbourne, Parkville, VIC, 3010, Australia

artem.polyvyanyy@unimelb.edu.au

Abstract. According to our recent proposal, an information system is a combi-
nation of a process model captured as a Petri Net with Identifiers, an information
model specified in the first-order logic over finite sets with equality, and a speci-
fication of how the transitions in the net manipulate information facts. The Infor-
mation Systems Modeling (ISM) Suite is an integrated environment for develop-
ing, simulating, and analyzing models of information systems, released under an
open-source license. This paper presents the basic features of the ISM Suite.

Keywords: Information systems, modeling, simulating, tools

1 Introduction

An information system (IS) is an integrated system of components that aim to collect,
store, organize, manipulate, process, and disseminate data, information, and knowledge,
often in the form of digital products. Finding the right balance between static and dy-
namic aspects is essential when designing an IS. As shown in [8], existing modeling
languages often focus only on one of the two aspects. Therefore, we introduced in [8]
the Information Systems Modeling Language (ISML), which focuses on expressing
both these aspects and their interplay. An ISML model captures information aspects of
using first-order logic with finite sets and equality and describes dynamic aspects that
govern the information using Petri nets with Identifiers (PNIDs). Due to this symbiosis,
ISML models feature:
1. CRUD operations over information facts and arbitrary information constraints;
2. Process dependencies that extend to infinite-state processes; and
3. Formal foundation which enables automated verification, e.g., one can decide if the

system can evolve from its initial state into some other state of interest.
This approach to modeling and analyzing information systems promises advantages

in educating future Information Systems professionals. Some benefits reported by stu-
dents include the immediate experience of the consequences of design decisions and
traceability between abstract and implemented concepts [11].

This paper focuses on presenting the Information Systems Modeling Suite (ISM
Suite), an integrated collection of programs and tools for designing, executing, testing,

2 J.M.E.M. van der Werf and A. Polyvyanyy

simulating, and analyzing models of information systems captured in ISML. The next
section describes a motivating scenario of a small yet comprehensive information sys-
tem. Then, Section 3 exemplifies ISML by giving an in-depth presentation of an ISML
model that captures the motivating scenario. Section 4 presents the ISM Suite and its
features. The paper closes with conclusions.

2 Motivating Example

Consider the following running example, which we employ throughout the paper. A
small organization uses a process-aware information system to support the management
of its purchase orders. The organization works with a bidding system for its suppliers. If
the organization wants to order a Product, it requests a bid from each of its Suppliers. At
least two Suppliers need to respond with their bids, before the organization can select
the best bid, and order the Product at the chosen Supplier.

Fig. 1. BPMN model of the Purchase Order system.

The BPMN model that describes the dynamics of the IS is depicted in Fig. 1. First,
an employee at the organization creates an Order. Next, several Suppliers bid for the
Order, implemented via a “multi-instance activity” [2]. Finally, the best Supplier is
selected and receives the Order, after which the Supplier delivers the ordered Product.

The information model of the IS is shown as an Object-Role Model (ORM) [3] in
Fig. 2. According to this model, Suppliers supply Products. An Order always contains
exactly one Product (c1, c4). Supplier can bid on an Order. From the bids, a Supplier
is selected, and receives the Order (c5). At most one Supplier receives the Order (c2).
Eventually, the selected Supplier can deliver the Order (c6). Note that at most one Sup-
plier can deliver the Order (c3).

productsupplier

order

supplies

contains

b
id
s

re
c
e
iv
e
s

d
e
liv
e
rs c3 c2

c1

c5c6

c4

Fig. 2. Information model of the Purchase Order system.

The Information Systems Modeling Suite 3

The organization faces a problem with the IS: no progress can be made for many
orders. Both the process model and the information model do not expose any error: the
process model is sound and the constraints of the information model do not contradict.
However, it is the interplay of these models that causes the problem: if at most one
Supplier supplies a requested Product, the process cannot progress. In the remainder of
this paper, we show how our tool, the Information Systems Modeling Suite (ISM Suite),
can assist the modeler to analyze the interplay between the process and data.

3 Information Systems Modeling Language

Modeling a process-aware information system requires at least three aspects (cf. [1,7,8]):
an information model for the structure of the information, a process model describing
the possible activities and their order, and a specification that defines how activities
manipulate the information model. To model such systems, we proposed the Informa-
tion Systems Modeling Language (ISML) in [8]. In the remainder of this section, we
exemplify ISML using the motivating scenario from Section 2.

3.1 Information Modeling

An information model consists of a set of entity types, relations – characterized by finite
sequences of entity types – and a set of constraints, specified in first-order logic. Given
a sequence or tuple σ, by σ(i), i ∈ N, we denote the element at position i in σ. Let I
and Λ be a universe of identifiers and a universe of labels, respectively.

Definition 1 (Information model)
An information model is a 5-tuple (E,R, ρ, η, Ψ), where:
– E ⊆ P(I) is a finite set of entity types;
– R ⊆ Λ is a finite set of relation types;
– ρ ∶ R → E∗ is a relation definition function that maps every relation type onto a finite

sequence of entity types;
– η ∶ E → R is an entity relation definition function that maps every entity type onto a

relation type such that η is injective and for every e ∈ E it holds that ρ(η(e)) = ⟨e⟩,
η(e) is called the entity relation of e;

– Ψ is a collection of statements in first-order logic that for every r ∈ R, n = ∣ρ(r)∣,
(i) can use predicate r over the domain In, called the relation predicate of r, and (ii)
contains the statement:

∀ i ∈ In ∶ (r(i(1), . . . , i(n)) ⇒ (
n

⋀
k=1

η(ρ(r)(k))(i(k)))) ,

called the relation predicate statement of r. ⌟

Definition 1 refines the corresponding definition presented in [8]. It introduces func-
tion η that explicitly defines entity relations. In addition, it requires that the predicates
induced by the relation types, i.e., relation predicates, are named after the correspond-
ing relation types, i.e., for every relation r ∈ R statements in Ψ can use predicate r of

4 J.M.E.M. van der Werf and A. Polyvyanyy

the corresponding arity. Finally, for every relation type, it introduces one relation pred-
icate statement to the theory that establishes dependencies between the truth values of
the relation predicates. Note that a relation predicate statement of an entity relation is a
tautology. The information model of the Purchase Order system is shown in Example 1.

Example 1 (Information model of the Purchase Order system)
The information model of the Purchase Order system as depicted in Fig. 2 is captured
as the 5-tuple (E,R, ρ, η, Ψ), where:
– E = {Es,Ep,Eo};
– R = {supplier ,product ,order ,supplies,receives,bids,delivers,contains};
– ρ = {(supplier , ⟨Es⟩), (product , ⟨Ep⟩), (order , ⟨Eo⟩), (supplies, ⟨Es, Ep⟩),

(receives,⟨Es,Eo⟩),(bids,⟨Es,Eo⟩),(delivers,⟨Es,Eo⟩),(contains,⟨Eo,Ep⟩)};
– η = {(Es,supplier),(Ep,product),(Eo,order)}; and
– {ψ1,. . . ,ψ11} ⊂ Ψ , such that:
● ψ1⇔∀i ∈ I ∶ (supplier (i) ⇒ (¬product (i) ∧ ¬order (i)));
● ψ2⇔∀i ∈ I ∶ (product (i) ⇒ (¬supplier (i) ∧ ¬order (i)));
● ψ3⇔∀i ∈ I ∶ (order (i) ⇒ (¬supplier (i) ∧ ¬product (i)));
● ψ4⇔∀o ∈ Eo∀p1 ∈ Ep∀p2 ∈ Ep ∶ ((contains (o, p1)∧contains (o, p2)) ⇒ (p1 = p2));
● ψ5⇔∀s1 ∈ Es∀s2 ∈ Es∀o ∈ Eo ∶ ((receives (s1, o) ∧ receives (s2, o)) ⇒ (s1 = s2));
● ψ6⇔∀s1 ∈ Es∀s2 ∈ Es∀o ∈ Eo ∶ ((delivers (s1, o) ∧ delivers (s2, o)) ⇒ (s1 = s2));
● ψ7⇔∀o ∈ Eo∃p ∈ Ep ∶ contains (o, p);
● ψ8⇔∀s ∈ Es∀o ∈ Eo ∶ (receives (s, o) ⇒ bids (s, o));
● ψ9⇔∀s ∈ Es∀o ∈ Eo ∶ (delivers (s, o) ⇒ receives (s, o));
● ψ10⇔∀s ∈ Es∀o ∈ Eo ∶ (∃p ∈ Ep ∶ (bids (s, o) ⇒ (supplies (s, p)∧contains (o, p))));
● ψ11⇔∀s1 ∈ Es∀o ∈ Eo ∶ (bids (s1, o) ⇒ (∃s2 ∈ Es ∶ (s1 ≠ s2 ∧ bids (s2, o)))). ⌟
To visualize an information model, we use the Object-Role Modeling (ORM) no-

tation. For each Entity Type e ∈ E, we draw an ORM Entity Type, for each relation
types that are not an entity relation, we draw an ORM Fact Type with r as its caption.
Some constraints are supported in ORM notation. For example, uniqueness constraints
(e.g. ψ4, visualized as c1 in Fig. 2), mandatory constraints (e.g. ψ7 visualized as c4),
and subset constraints (e.g. ψ8 visualized as c5).

An information model can be populated with facts. If a population satisfies all con-
straints, it is called valid.

Definition 2 ((Valid) Population, Fact)
A population of information model (E,R, ρ, η, Ψ) is a function π ∶ R → P(⋃n∈N In)
such that every element in the population is correctly typed, i.e., for every r ∈ R it holds
that π(r) ∈ P(∏∣ρ(r)∣i=1 ρ(r)(i)). An element in π(r) is called a fact. The population is
valid, denoted by π ⊧ ∆, only if π ⊧ Ψ , given that for every r ∈ R, n = ∣ρ(r)∣, it holds
that ∀(i1, . . . , in) ∈ In ∶ (r(i1, . . . , in) ⇔ (i1, . . . , in) ∈ π(r)); otherwise π is invalid,
denoted by π /⊧∆. ⌟

To manipulate populations, we define two operations for inserting and removing a
fact from a relation. Operations can be concatenated, resulting in a transaction.

Definition 3 (Transaction)
Let D = (E,R, ρ, η, Ψ) be an information model and let π be a population of D. An
operation is a tuple o ∈ O(D), where O(D) = (R × {⊕,⊖} ×⋃n∈N In).

The Information Systems Modeling Suite 5

– Operation o = (r,⊕, v) inserts fact v of type r into π iff π′ = (π ∖ {(r, π(r))}) ∪
{(r, π(r) ∪ {v})} is a valid population of D, denoted by (D ∶ π r⊕vÐ→ π′).

– Operation o = (r,⊖, v) removes fact v of type r from π iff π′ = (π ∖ {(r, π(r))}) ∪
{(r, π(r) ∖ {v})} is a valid population of D, denoted by (D ∶ π r⊖vÐ→ π′).

A transaction s ∈ (O(D))∗ is a finite sequence of operations such that every subse-
quent operation is performed over a population resulting from the previous operation.
A transaction is valid if the initial and resulting populations are both valid. ⌟

Example 2 (Transaction in the Purchase Order system)
A transaction in the Purchase Order system to add some Order o1 for Product p can be
expressed as follows: ⟨(order,⊕, (o1)); (contains,⊕, (o1, p))⟩. For any valid popula-
tion π such that o1 /∈ π(order), this transaction is valid. ⌟

3.2 Process Modeling with Petri Nets with Identifiers

For modeling the activities and their order we use Petri nets with Identifiers (PNID) [4,8].
PNIDs can be seen as an extension of ν-Nets [9]. In a PNID, tokens carry a vector of
identifiers. These vectors have the advantage that a single token can represent multiple
entities at the same time. In this way, a token may represent a (composed) fact from
a population of an information model. Each place is typed with a vector of identifiers,
i.e., all tokens in a place have the same vector length, called the cardinality. Arcs are
annotated with vectors of variables. Its size is implied by the cardinality of the place it
is connected to. Let Σ denote the universe of variables.

Definition 4 (Petri net with Identifiers)
A Petri net with Identifiers (PNID) N is a 5-tuple (P,T,F,α, β), where:
– P and T are two disjoint sets of places and transitions, resp., i.e., P ∩ T = ∅;
– F ∶ ((P × T) ∪ (T × P)) → N0 is the flow function;
– α∶P → N0 defines the cardinality of a place, i.e., the length of the vector of identifiers

carried on the tokens residing at that place; its color is defined by C(p) = Iα(p);
– β defines the variable vector for each arc, i.e., β ∈ ∏{f ∣F (f)>0)} Vf , where
V(p,t) = V(t,p) = Σα(p) for p ∈ P, t ∈ T .

Its set of all possible markings is defined as M(N) = ∏p∈P (C(p) → N0). The pair
(N,m) is a marked PNID if m ∈ M(N). ⌟

To fire a transition, the variables on its arcs need to be valuated to match identfiers
the tokens carry. A valuation maps each variable to an identifier. New identifiers can
be created if a transition contains variables that only occur on outgoing arcs. The valu-
ation guarantees that variables occurring on an outgoing arc each receive a new, fresh
identifier. For the full semantics of PNIDs, we refer the reader to [4,8].

Example 3 (PNID of the Purchase Order system)
The PNID of the Purchase Order system is depicted in Fig. 3. The multiple-instance
activity is translated in a standard pattern in which two suppliers can be asked simul-
taneously. The net starts in the marking with three tokens in place r, and three to-
kens in place s. These tokens resemble products and suppliers, resp., i.e., m0 = {r ↦

6 J.M.E.M. van der Werf and A. Polyvyanyy

product

Create order

Request bid Time
out

Select best bid

Deliver

max

Supplier

Send
bid

product order order

order order order

(supplier, order)

(supplier, order)

(supplier, order)

2`order
2`order

supplier supplier

p

q

r

s

v

(supplier,
order)

(supplier,
order)

Fig. 3. PNID of the Purchase Order system.

[p, q, r], s ↦ [s, t, v]}. In this marking, transition Create order is enabled with val-
uation ν1 = {order ↦ o1,product ↦ p}, where o1 is a fresh identifier. Firing this
transition results in marking m1 = {p↦ [o1], q ↦ [o12], r ↦ [p, q, r], s↦ [s, t, v]}. ⌟

3.3 Semantics of the Information Systems Modeling Language

Transitions in the process model often resemble events that manipulate the informa-
tion model. For example, in the Purchase Order system, the transition Create order
resembles adding a new order fact to the information model. In ISML, each transition is
specified with an abstract transaction that describes how the transition manipulates the
information model. Similar to transition firing, abstract transactions rely on valuations
to be instantiated. The set of all abstract transactions over some information model D
is denoted by T (D), and extends normal operations by allowing variables in the facts.

Example 4 (Specification of the Purchase Order process)
The Purchase Order system has four transitions with a non-empty abstract transaction.
The variables used in the transactions coincide with the variables used on the arcs.
– Transition Create order ensures an order contains exactly one product:
S(Create order) = ⟨(order,⊕, (order)); (contains,⊕, (order ,product))⟩.

– Transition Send bid resembles the activity that a supplier responds to an order:
S(Send bid) = ⟨(bids,⊕, (supplier ,order))⟩

– Transition Select best bid sends the order to the best supplier:
S(Select best bid) = ⟨(receives,⊕, (supplier ,order))⟩

– Transition Deliver models that the order is delivered by the supplier:
S(Deliver) = ⟨(deliver,⊕, (supplier ,order))⟩ ⌟

An information system model has three constituents: an information model D, a
PNID N , and a specification S. In an information system, executing a transaction
should not result in an invalid population. Therefore, given a state (π,m), a transi-
tion can only fire if (i) it is enabled in (N,m), and (ii), its transaction results again in a
valid population. For an overview of ISML and its semantics, we refer the reader to [8].
The information system model of the Purchase Order system is given in Example 5.

The Information Systems Modeling Suite 7

Example 5 (Information System Model of the Purchase Order system)
The information system model for the Purchase Order system uses the information
model of Example 1, the PNID depicted in Fig. 3, and the specification in Example 4.
Consider the following initial population, with three products and three suppliers:

product(p) supplier(s) supplies(s,p) supplies(t, r)
product(q) supplier(t) supplies(s, q) supplies(v , r)
product(r) supplier(v) supplies(t,p)

Hence, the tokens in place r resemble the products, and the tokens in place s suppliers.
Transition Create order is enabled in the PNID with three valuations, one for each
product. None of the valuations result in an invalid transaction on the current population.
Hence, the transition is enabled in the ISM with all three valuations.
Selecting valuation ν1 results in transaction: ⟨(order,⊕, (o1)); (contains,⊕, (o1 ,p))⟩.
Firing the transition with this valuation results in marking m1 (see Example 4), and the
valid population:

product(p) supplier(s) supplies(s,p) supplies(t, r) order(o1)
product(q) supplier(t) supplies(s, q) supplies(v , r) contains(o1, p)
product(r) supplier(v) supplies(t,p)

In markingm1, two transitions are enabled in the PNID: Request bid and Select best
bid. Both are enabled with three valuations, one for each supplier. Consider valuation
ν2 = {supplier ↦ v,order ↦ o1}. For transition Select best bid, this valuation re-
sults in the transaction ⟨(receives,⊕, (v ,o1))⟩. However, this transaction invalidates
the constraints ψ8 and ψ11, as the population contains no bids for order o1. Hence, this
transition is not enabled in the ISM for any of the valuations. Only transition Request
bid is enabled. Firing it with valuation ν2 results in the marking m2 = {p ↦ [o1], q ↦
[o1], v ↦ [o1], r ↦ [p, q, r], s ↦ [s, t, v]}. Now, transitions Time out and Send bid
are enabled in the PNID, with valuation ν3 = {order ↦ o1}. However, the transaction
induced by Send bid yields an invalid population, as supplies(v, p) is not a fact in our
population. Hence, only transition Time out is enabled in the current state. ⌟

4 ISM Suite

The ISM Suite is implemented as a plug-in for Eclipse and can be installed via a publicly
available Update Site.3 The ISM Suite consists of an editor and simulator for PNIDs,
and a simulator for ISMs. It heavily builds upon ePNK [6] and is fully PNML com-
pliant [5]. The ISM Suite has its own perspective in Eclipse. It uses its own prover
and simulation libraries, which, together with the source code of the ISM Suite, can be
found on Github.4

4.1 Editing and Simulating PNIDs

As the ISM Suite process editor is based on ePNK, it opens with a process explorer,
which displays the content of the PNML file. Initially, a net is created of the correct
type, together with a page. As the editor is PNML compliant, all Petri net content has

3 See: http://informationsystem.org/ismsuite/
4 See: https://github.com/information-systems/ISMSuite

http://informationsystem.org/ismsuite/
https://github.com/information-systems/ISMSuite

8 J.M.E.M. van der Werf and A. Polyvyanyy

Fig. 4. The ISM Suite. The view on the left depicts the PNID, a popup menu with enabled valua-
tions is shown. The panel on the right shows the current population of the ISM.

to be created on pages. The editor supports reference places and reference transitions to
“divide” the net over several pages. By double-clicking on a page, the graphical editor
is started. Places, transitions, and arcs can be inserted on the canvas from the pallet.

By default, all places have the cardinality of 0, i.e., can hold “black” tokens. Instead
of working with cardinalities, the ISM Suite is structurally typed, i.e., each constituent
has its type, and variables need to be consistently typed. The cardinality is derived from
this type. A place can be typed by adding a label to the canvas and connecting it with a
“Link label”. The type is specified as a bracketed list of entity types. Each entity type
has to start with a lower case. Similarly, the inscription of arcs can be added. Places
with a non-empty type are colored yellow in the editor. Tokens can be added by creating
another label. Each token is identified by its vector. For example, 3‘() denotes three
black tokens, while 2‘(a,b)+(c,d) resembles three “colored” tokens: two tokens
carry the vector (a, b) and one token carries the vector (c, d).

To simulate the PNID, one can start the simulator via the menu “ISM Suite”. Be-
fore the engine is started, the net is validated and type-checked. If the net is invalid, a
warning is shown, together with the violations. The simulator is shown in the left panel
of Fig. 4. Once the simulator is started, enabled transitions are marked with a thick red
outline. On clicking on such transition, a menu is opened with the possible valuations.
After selecting a valuation, the transition fires. The tokens residing in a place can be
checked by clicking on that place. A menu is opened with a list of all tokens.

4.2 Simulating ISMs

To simulate an information system model, choose the “Start ISM Simulator” option in
the menu “ISM Suite”. A dialog is opened that asks for two files: an information model
and a specification. The information model needs to be specified in the Typed First-
Order Formulae (TFF) format [10]. For example, constraint ψ11, refer to Example 1, at
least two bids of different suppliers are required, can be written in TFF as:

The Information Systems Modeling Suite 9

Fig. 5. The ISM Suite. The panel on the right explains why certain transitions are not enabled.

tff(domain_constraint_at_least_two_bids, conjecture,
! [S1: universe, O: universe] :
(receives(S1,O) => (? [S2: universe] : ((S1 != S2) & bids(S2,O))))).

A transaction is specified by a name and a set of typed variables and consists of a
sequence of operations. Different from the information model, the ISM Suite does not
“know” which entities are present in each entity type. These need to be added explicitly
in the transaction. To this end, there are four operations:
– Operation register p; adds element p to its entity type set;
– Operation deregister p; removes element p from its entity type set;
– Operation insert (a,...,z) into relation; inserts fact (a, . . . , z) to ‘relation’; and
– Operation remove (a,...,z) from relation; removes fact (a, . . . , z) from ‘relation’.
Transactions are matched with the transitions of the PNID by their identifiers. To create
an initial population, upon starting the simulator, all places that contain tokens are also
matched with transactions. For places, the variable names have to match the identity
types as specified in the place type. For example, to specify the initial population, as
presented in Example 5, a place is added with five tokens, and the place is matched with
the following transaction:
transaction Offer.provides(supplier: universe, product: universe) {
register product; register supplier;
insert (product) into product; insert (supplier) into supplier;
insert (supplier, product) into supplies; }

If the model is fully consistent, the simulator is started, as shown in Fig. 4. On the left,
the process model is shown, the panel on the right shows the current population. By
firing transitions, the population is updated automatically. As shown in the figure, tran-
sition Select best bid is not enabled, even though there are sufficient tokens. To study
why the transition is not enabled, the panel on the right has a second tab, “Disabled
transitions”, as shown in Fig. 5. For each transition and valuation that is not enabled, an
explanation is given why the transition is not enabled. As shown in this figure, transi-
tion Select best bid, is not enabled because it violates two constraints “receives subset
bids” and domain constraint “at least two bids”.

10 J.M.E.M. van der Werf and A. Polyvyanyy

5 Conclusion

As the interplay between data and processes can be very subtle, it is not sufficient to
only study information and process models in isolation. In this paper, we present the
Information System Modeling Suite (ISM Suite). It is a tool that helps to study how
processes and data are related in an information system. The tool provides editing and
simulation facilities for modeling Petri Nets with Identifiers. Furthermore, it allows
simulating information system models. It combines process models with an information
model in terms of first-order logic constraints, and a simple specification language to
define how transitions manipulate the information model. The tool provides visual aids
to assist the modeler by explaining why certain transitions are disabled in the ISM.

We envision the ISM Suite as a tool for learning modeling of information systems.
In the future, we want to perform several experiments with students to validate the mod-
eling approach, and how it is experienced, similar to [11]. As the ISM Suite currently
only supports visual modeling of processes, we plan to extend it with visual facilities
for information modeling, together with simulation and analysis options.
Acknowledgment. Artem Polyvyanyy was partly supported by the Australian Research
Council Discovery Project DP180102839.

References

1. R. De Masellis, C. Di Francescomarino, C. Ghidini, M. Montali, and S. Tessaris. Add data
into business process verification: Bridging the gap between theory and practice. In AAAI,
pages 1091–1099. AAAI Press, 2017.

2. M. Dumas, M. La Rosa, J. Mendling, and H. Reijers. Fundamentals of Business Process
Management. Springer, 2018.

3. T. A. Halpin and T. Morgan. Information Modeling and Relational Databases. Morgan
Kaufmann Publishers, 2nd edition, 2008.

4. K. M. van Hee, N. Sidorova, M. Voorhoeve, and J.M.E.M. van der Werf. Generation of
Database Transactions with Petri nets. Fundamenta Informatica, 93(1–3):171 – 184, 2009.

5. L. M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Tréves. A primer on the petri net
markup language and iso/iec 15909-2. Petri Net Newsletter, 76:9–28, 2009.

6. E. Kindler. The ePNK: A generic PNML tool - Users’ and Developers’ Guide for Version
1.0.0. Technical Report IMM-Technical Report-2012-14, DTU Informatics, 2012.

7. M. Montali and A. Rivkin. DB-Nets: On the marriage of colored Petri nets and relational
databases. In Petri Nets, volume 10470 of LNCS, pages 91–118. Springer, 2017.

8. A. Polyvyanyy, J. M. E.M. van der Werf, S. J. Overbeek, and R. A. C. M. Brouwers. Infor-
mation systems modeling: Language, verification, and tool support. In CAiSE 2019, volume
11483 of LNCS, pages 194–212. Springer, 2019.

9. F. Rosa-Velardo and D. de Frutos-Escrig. Decidability and complexity of Petri nets with
unordered data. Theoretical Computer Science, 412:4439–4451, 2011.

10. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

11. J.M.E.M. van der Werf and A. Polyvyanyy. An assignment on information system modeling.
In BPM Ed. Symp., volume 342 of LNBIP. Springer, 2018.

	The Information Systems Modeling Suite
	Introduction
	Motivating Example
	Information Systems Modeling Language
	Information Modeling
	Process Modeling with Petri Nets with Identifiers
	Semantics of the Information Systems Modeling Language

	ISM Suite
	Editing and Simulating PNIDs
	Simulating ISMs

	Conclusion

